Архив материалов портала

Февраль 2018
ПВСЧПСВ
   1234
567891011
12131415161718
19202122232425
262728    

Жидкокристаллический монитор, ЖК LCD монитор, устройство и назначение мониторов ЖК плюсы и минусы общий обзор

Новое время - новые технологии. Постепенно мы уже отвыкаем от старых и громоздких ЭЛТ мониторов для персональных компьютеров. На смену пришли новые, тонкие, легкие и удобные жидкокристаллические мониторы (ЖК LCD мониторы). Именно о них мы и расскажем в данном обзоре. Обозначим все плюсы и минусы ЖК мониторов.

Жидкокристаллический монитор, ЖК LCD монитор, устройство и назначение мониторов

ЖК-монитор (жидкокристаллический монитор, дисплей) – это плоский монитор на основе жидких кристаллов. ЖК-монитор, LCD (англ. liquid crystal display), плоский индикатор, плоский дисплей. LCD TFT (англ. TFT - thin film transistor - тонкоплёночный транзистор) - одно из названий жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами. Усилитель TFT для каждого субпиксела применяется для повышения быстродействия, контрастности и чёткости изображения. Основными производителями ЖК мониторов являются такие фирмы: Acer ADI Apple Bridge Compaq CTX Eizo Hitachi Hyundai IBM iiyama LG MAG MITSUBISHI NEC Nokia Panasonic Radius Philips Samsung Scott Sony ViewSonic OptiQuest. Да, кто бы мог подумать, что производителей ЖК мониторов так много. Но как уверили нас специалисты по ремонту ЖК мониторов в Минске, на самом деле распространены в Беларуси от силы 6-7 производителей мониторов. Остальные по-большому счету к Беларуси не относятся и официально не ввозятся. Тем более в минском сервисном центре по ремонту мониторов попросили предупредить в данной статье-обзоре, что покупать ЖК мониторы неизвестных производителей нежелательно. Как правило они не долговечны, а официальной гарантии или авторизированных сервисных центров на территории РБ нет. На момент написания обзора ЖК мониторов средняя стоимость мониторов в Минске составляет от 150 до 500 у.е в зависимости от производителя, технологии и расширения монитора.

Назначение и устройство ЖК-монитора

Назначение ЖК-монитора. Жидкокристаллический монитор предназначен для отображения графической информации с компьютера, TV-приёмника, цифрового фотоаппарата и пр. Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы, телефоны, плееры, термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей. Многоцветное изображение формируется с помощью RGB-триад. На сегодняшний день (2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, и во всех дисплеях ноутбуков используются матрицы с 18-битным цветом(6 бит на канал), 24-битность эмулируется мерцанием с дизерингом.
Устройство ЖК-монитора. Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым. Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него он проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Изменяя напряжение монитора, можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток, или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице ЖК можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, т.к. растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки (в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и конечно же самого корпуса. Именно совокупность этих составляющих определяет свойства ЖК монитора в целом, хотя некоторые технические характеристики монитора важнее других. Например, многие белорусы очень часто, покупая монитор смотрят на внешний облик (так называемый "красивый монитор"), хотя на самом деле корпус монитора второстепенный компанент.

Новые и старые технологии ЖКИ (TN+film, Vertical Alignment, In-Plane Switching), история ЖК мониторов

Жидкокристаллические мониторы были разработаны в еще далеком 1963 году в исследовательском центре Давида Сарнова компании RCA, Принстон, штат Нью-Джерси. Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, применённый в конкретных разработках. Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - это кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества ЖК- (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту и вертикали, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойдённую управляемость и качество изображения.

Технология ЖК TN+film (Twisted Nematic + film)

Последняя часть film в названии технологии ЖК означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку film часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет. TN + film — самая простая технология. Матрица TN + film работает следующим образом: если к субпикселям не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет не проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка. К достоинствам данной технологии ЖК можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость. Недостатки технологии Twisted Nematic + film: худшая цветопередача, наименьшие углы обзора

Технология ЖК VA (Vertical Alignment)

MVA (Multi-domain Vertical Alignment). Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160° (на современных моделях мониторов до 176-178°), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки. Достоинствами технологии MVA являются глубокий чёрный цвет и отсутствие как винтовой структуры кристаллов, так и двойного магнитного поля. Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения. Аналогами MVA являются технологии: PVA (Patterned Vertical Alignment) от Samsung. Super PVA от Samsung. Super MVA от CMO. Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Технология ЖК IPS (In-Plane Switching)

Технология ЖК In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170° в ЖК мониторах, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне. На настоящий момент матрицы, изготовленные по технологии IPS, - единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. Старые TN-матрицы имеют 6-бит на канал, как и часть MVA. Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение чёрного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а чёрным. При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет. IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi 1998 год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика. Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам ЭЛТ, контрастность всё равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20". LG.Philips, Dell и NEC остаются единственными производителями панелей по данной технологии. AS-IPS (Advanced Super IPS — расширенная супер-IPS) — также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации NEC (например, NEC LCD20WGX2) созданных по технологии S-IPS, разработанной консорциумом LG.Philips. A-TW-IPS (Advanced True White IPS - расширенная IPS с настоящим белым) - разработана LG.Philips для корпорации NEC. Представляет собой S-IPS панель с цветовым фильтром TW (True White — «настоящий белый») для придания белому цвету большей реалистичности и расширению цветового диапазона. Этот тип панелей используется при создании профессиональных мониторов для использования в фотолабораториях и/или издательствах. AFFS (Advanced Fringe Field Switching, неофициальное название S-IPS Pro). Технология является дальнейшим улучшением IPS, разработана компанией BOE Hydis в 2003 году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays.

Выводы преимущества и недостатки ЖК мониторов (плюсы и минусы)

В настоящее время в ИТ сфере ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2—4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК-мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более герц. Светодиодная подсветка в основном используется в небольших ЖК дисплеях, хотя в последние годы она все шире применяется в ноутбуках (ноутбуки Sony - лидеры) и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват. С другой же стороны, ЖК-мониторы имеют и недостатки, часто принципиально трудноустранимые, например: В отличие от ЭЛТ мониторов, могут отображать чёткое изображение лишь в одном разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320×200) вообще не могут быть отображены на многих ЖК мониторах. Цветовой охват ЖК мониторов и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах). Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений (поэтому многие дизайнеры работают на ЭЛТ мониторах). Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения. Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки). Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев. Технология overdrive решает проблему скорости лишь частично. Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии. Массово производимые ЖК-мониторы плохо защищены от повреждений. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей. Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2. Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс первый, он вообще не допускает наличия дефектных пикселей в ЖК мониторе. Самый низкий класс четветрый, допускает наличие до 262 дефектных пикселей на 1 миллион работающих в мониторе. Вопреки расхожему мнению пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев не подверженных деградации пикселей. Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED-дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю. Напоминаем все пользователям, что обсудить мониторы, задать вопросы о эксплуатации, покупке, продаже и настройке ЖК мониторов можно на нашем компьютерном форуме.

Защитный код Обновить Отправить

Рейтинг мониторов

Самый лучший монитор